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Sources of Gas

* In arepository for heat emitting radioactive waste gas will be
generated through a number of processes including:

S

— Corrosion of metals (H,)

— Radioactive decay of the waste (Rn etc)
— Radiolysis of water (H,)

— Microbial activities

« |f production exceeds diffusion capacity a discrete gas phase
forms

« Gas will accumulate until its pressure becomes sufficiently
large to enter the engineered barrier or host rock

« Understanding gas generation and migration is a key issue in
the assessment of repository performance
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Relevance to Performance

Example layout from the Swiss Concept of a  The percolation of gas through

Clay-based Repository (Seiphoori, 2015) the EBS may impair the safety
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o Mesnanchors rock:
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- Microbial activities?




State of the Art with R&D Gaps and Needs

« Transport of gases in clay-based buffer materials has been the subject of
several international projects (e.g. LASGIT, FORGE)

« Substantial insight has been gained in the phenomenology of gas
transport processes in bentonite and low permeability host rocks

 Model-based approaches have been proposed for the analysis of gas
release scenarios in the context of long-term safety assessment

 The predictive capability of the gas transport models is still limited,
Indicating that basic mechanisms of gas transport in bentonite and
low permeability host rocks are not understood in sufficient detail to
provide the ground for robust conceptual and quantitative models.
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State of the Art with R&D Gaps and Needs

« Transport of gases in clay-based buffer materials has been the subject of
several international projects (e.g. LASGIT, FORGE)

« Substantial insight has been gained in the phenomenology of gas
transport processes in bentonite and low permeability host rocks

 Model-based approaches have been proposed for the analysis of gas
release scenarios in the context of long-term safety assessment

 The predictive capability of the gas transport models is still limited,
Indicating that basic mechanisms of gas transport in bentonite and
low permeability host rocks are not understood in sufficient detail to
provide the ground for robust conceptual and quantitative models.

= Predictive capabilities are being developed along
with participation in DECOVALEX-2019 with access
to experimental data for model testing and validation
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Conceptual Model of Gas Migration

a) Phenomenological description
based on the microstructural model concept

Advection & diffusion of Visco-capillary fiow of gas and Dilatancy controlled gas Gas transport in tensile
dissolved gas water phase ("two-phase flow”") flow ("pathway dilaton”) fractures (“hydro-/gasfrac”)

b) Basic transport mechanisms

Single phase
(gas)

c) Geomechanical regime

d) Effect of gas transport on the barrier properties of the host rock

Not affected Dilatancy-controlled Distinct fracture
permeability transmissivity

(Source NAGRA NTB 08-07)
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DECOVALEX-2019 Task A: modEllINg Gas

INjection EXpERIments (ENGINEER)

The purpose is to better understand the processes governing the advective
movement of gas in two low permeability materials (Bentonite and

Claystone) e v
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Advection and diffusion Visco-capillary flow of gas and Dilatancy controlled gas Gas transport in tensile
of dissolved gas water phase ("two-phase flow”) flow ("pathway dilation”) fractures ("hydro-/gasfrac”)

« British Geological Survey (BGS) provides laboratory data, expertise and
lead this DECOVALEX-2019 task

* 9 Research Teams from 8 countries participate in analyzing and
modeling the data
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DECOVALEX Task A Research Teams

(1) BGR/UFZ (Germany): Federal Institute for Geosciences and Natural
Resources and the Helmholtz Centre for Environmental Research.

(i)  CNSC (Canada): Canadian Nuclear Safety Commission.
(i) KAERI (Korea): Korea Atomic Energy Research Institute
(iv) LBNL (United States of America): Lawrence Berkeley National Laboratory.

(v)  NCU/TPC (Taiwan): National Central University and the Taiwan Power
Company (Taipower).

(vi) Quintessa/RWM (United Kingdom): Quintessa Ltd on behalf of
Radioactive Waste Management.

(vii)  SNL (United States of America): Sandia National Laboratories.

(viii) UPC/Andra (Spain/France): Universitat Politecnica de Catalunya, funded
by 'Agence nationale pour la gestion des des déchets radioactifs.
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Gas Flow Experimental Data on Bentonite

BGS Test Cell: Stage 1A: 1D Gas Flow Test

[A] Viton'd) ring Bentonite Filters © = radial filters Injection filter
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cell housing .
(Harrington etal., 2003)  Radalsnicarays Stage 2A: Radial Gas Flow Test
« MX80 bentonite confined into the cell @ = radial filters Injection filter
« Saturate the sample with water to
develop swelling stress Bentonite Monitoring
sample ™ rod

* Inject hydrogen gas

 Monitor pressure, gas outflow, and
stress during 4 month Radial Radial  Radial

array 1 array 2 array 3

( Tamayo-Mas et al., 2018)
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Stage 1A Tests Data (1D flow,

stress, pressure)
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LBNL Modeling Approach

Two different TOUGH-based coupled flow and mechanical
modeling approaches:

1) LBNL-C: Continuum 2) LBNL-D: Discrete
model approach using fracture model approach
TOUGH-FLAC using TOUGH-RBSN

( TOUGH-FLAC and TOUGH-RBSN described in Rutgvist, 2017; Kim et al., 2017)
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LBNL-Continuum Using TOUGH-FLAC
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LBNL-Continuum Best Matched Case
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LBNL-Discrete Fracture Model (TOUGH-RBSN)

thermal strain,
shrinkage strain

TOUGH2
| |
temp, porosity,
pressure, permeability
saturation
Coupling coupling
e module
RBSN

effective stress,
fracture aperture

1

Model Grid Stage 2A

(a)

Array 3
Array 2

Array 1

(b)

e Voronoi node

neighboring nodal
connection

trajectory of
reference fracture

discretized
fracture

Discrete (lattice) representation of elasticity
and individual fractures

A fracture is represented by the breakage of
the springs (1D lattice elements) linking
adjacent Voronoi cells

Mohr-Coulomb criterion for fracturing

Fracture damage degrading spring coefficients
Fracture permeability depend on aperture
Moisture shrinkage of matrix blocks
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LBNL-Discrete Fracture Model (TOUGH-RBSN)

Movie of fracture (dilatant flow path) evolution:
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(Kim et al., 2018, TOUGH Symposium)

energy.gov/ne

J. Rutgvist, Gas Migration in Clay (NWTRB Fact Finding Feb 2019)



LBNL-Discrete Fracture Model (TOUGH-RBSN)
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« Outflow more homogeneous (all 3 arrays) in the model

(Kim et al., 2018, TOUGH Symposium)
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Other Fundamental Studies

Chaotic Non-linear Dynamics (Yifeng Wang, SNL, Boris Faybishenko, LBNL)

Outflow vs Time 399&:"':; Periodic component
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= The system is deterministically chaotic...

Pore-Scale Modeling: Two-Phase Flow in a Rough Channel (Hang Deng, LBNL)
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The gas migration is controlled by the interplay between the
surface tension, inertial, viscous and buoyancy forces.
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Modelling Approaches of DECOVALEX Teams

STAGE 1A
Two-phase flow continuum models
UPC/Andra-H: rigid medium
LBNL-C-E: elasticity
CNSC-E: elasticity
CNSC-D: damage
KAERI-D: damage
BGR/UFZ-P: elastoplasticity
CNSC-P: elastoplasticity
NCU/TPC-E: elasticity
Enrlched model with preferential pathways
9. Quintessa/RWM-Cap: capillary model
10. UPC/Andra-HM-E1: elasticity
11. UPC/Andra-HM-E2: elasticity
12. UPC/Andra-HM-P: elastoplasticity
Discrete approaches
13. LBNL-D: discrete fracture network
Other
14. SNL: chaotic model (conceptual)

©NOUAWN e

STAGE 2A
Two-phase flow continuum models
1. CNSC-D: damage
2. KAERI-D: damage
3. BGR/UFZ-P: elastoplasticity
4. CNSC-P: elastoplasticity
5. NCU/TPC-E: elasticity
Enriched model with preferential pathways
6. Quintessa/RWM-Cap: capillary model
7. UPC/Andra-HM-E1: elasticity
8. UPC/Andra-HM-E2: elasticity
9. UPC/Andra-HM-P: elastoplasticity
Discrete approaches
10. LBNL-D: discrete fracture network
Single-phase flow model (empirical model)
11. Quintessa/RWM-E1
12. Quintessa/RWM-E2
Other
13. SNL: chaotic model (conceptual)
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Evaluation of Different Models

STAGE 1A STAGE 2A
Model Radial stress Axial stress Pore pressure | Radial stress Axial stress Bulk flow
Elgs|*|o|lE|la|>|a|lE|la|>|o|E|a|2|o|lE|la||alE|a|2|o
BGR/UFZ-P -
CNSC-D
CNSC-P
KAERI-D
LBNL-C-E B B
LBNL-D B B
NCU/TPC-E
Quintessa/RWM-Cap
Quintessa/RWM-Emp .
UPC/Andra-H
UPC/Andra-HM-P

« Some models match the data better (green), but do they really model the
underlying micro-to-macro scale mechanisms correctly?

« Can they be up-scaled and applied at the field scale?
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Dual Structure of Bentonite

Poured, ¢ = 0.83

Gas flow expected to go through a
— — As compacted, ¢ = 0.53

network connected macro pores

Grain, e = 0.28
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0.4 __ bentonite grain
. grain
B Micro (intra-grain)
03 pores 12 - 20 nm S o
i : J / aggregate = e
0 N / . .
) ( Macro (inter-grain) pores
o 02— 1.5um Macro (inter-grain) pores
N I | 15-30 um
- |
- _ 7\
0.1
B \
— ~
0 IR T TITY B A T T YT BTN N W N YT B m 1 e e €T
107 10~ 10 10° 10' 10° 10° 10°

Pore size diameter, d [um]

(Seiphooir 2015: Pore structure from Mercury Intrusion Porosimetry (MIP) analysis Scanning Electron Microscopy (SEM) observations)
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Dilatant Flow Observations

&3 ¥ Au nanoparticle
) aggregates
N .

Au nanoparticle

aggregates —

trace of a closed (now "tight”)
microfracture intersecting the
plane of the fracture forming the
sample surface being observed.

Harrington et al. (2012)

Gas injection test (with nanoparticles) designed to demonstrate the presence of

pressure-induced dilatant pathways in Boom Clay

J. Rutgvist, Gas Migration in Clay (NWTRB Fact Finding Feb 2019)

energy.gov/ne



Avenue for Future Model Developments?

NAGRA-INTERA employs dual- LBNL’s TOUGH-FLAC simulator with
continuum models to consider Barcelona Expansive Model (BExM)
structural changes during free considers the two structural levels and
gas migration could be applied to study gas migration

AL Clay aggregates

acropore TOUGH2
Micropores between Multiphase flow and

clay particles heat transport

050 5

o,
FLAC3D
Geomechanics

020 | :
o
o f |

0.0 Macrostructure Microstructure

0

(a)  Gasentry (b) LBNL’s TOUGH-RBSN discrete fracture
Senger et al., (2018) model can be further developed to
TOUGH 2018 symposium consider long-term sealing and healing

of dilated flow paths

Any model needs to be validated against laboratory and (if possible) field
data, and needs to be demonstrated for application at the large scale....
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Planned Mont Terri Project Experiment

GT Experiment: Evaluation of gas transport models
and of the behavior of clay rocks under gas pressure

Lab Studies 2018 to 2020

Onset of gas flow as gas
enters clay. Pathways may
—> cause compaction and bulk
sample dilation

A dendritic pattern of gas
pathways forms slowly
=>  propagating through the
sample

Gas breakthrough

accompanied by an
increase in outflow. As
more pathways

opened the
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Potential DECOVALEX-2023 Task (Lasgit field-scale test)

Large ScaMGas Injection Test (l-asgit)
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P « The installation phase, including the deposition of canister
;ﬂ and buffer, was finalized in 2005.
P * Preliminary hydraulic and gas injection tests in 2008.

ol

» Natural and artificial hydration of the bentonite buffer.

* A unique data set for model validation at a relevant field
scale

-

(SKB, 2017, TR-17-10)
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Input to GDSA from Near-Field Coupled Processes Model

« The analysis for coupling to the PA model
might be focused on the near field of an
emplacement tunnel or a few
emplacement tunnels in different parts of
a repository and for different FEPs such as
nominal case or cases of extensive gas
generation.

* The inputs required are the geometry, heat
source, THM properties of buffer and host
rock, initial THM conditions (such as in situ
stress).

« The output to the PA model would be the
changes in flow properties (e.g. permeability
and porosity) in the EBS and near-field
including the buffer and DRZ and also to
inform PA related to local flow created by
coupled THM processes.
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SHORT TERM THM PROCESSES
(0 to 1000 years)
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Summary and Recommendations

« The study of gas flow migration in clay-based material has been to topic
of several international studies, increasingly over the last 5-10 years

 Still the basic mechanisms of gas transport in bentonite and low
permeability host rocks are not understood in sufficient detail, and
therefore the predictive capacities are limited

» Further work should strive to better represent the correct underlying
physics, such as dual structure behavior, in models that should still be
efficient to be applied at a repository tunnel scale

 International projects, such as the DECOVALEX project, provide
avenues for faster capability developments through exchanges of ideas
and collaborations, and through access to experimental data
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Questions?

Clean. Reliable. Nuclear.




