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Why glass dissolves? 
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For thermodynamic reasons 
µglass ≠ µsolution → ∆Greaction < 0 
Distance to equilibrium = Affinity: A = - RT ln (Q/Keq) 
Dissolution rate: r = r0 (1 – Q/K) 

H4SiO4 

Na+ 
B(OH)3 Ca2+ 

Al(OH)4
- 



Can thermodynamic equilibrium between glass 
surface and solution be achieved? 
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No, for thermodynamic & kinetic reasons 
→ Keq (glass) >> Keq (crystal) due to structural disorder 
→ Secondary phases with low solubility AND fast precipitation 

kinetics control the solution chemistry 

Grambow, J. Nucl. Mater. 2001 
Frugier, J. Nucl. Mater. 2008 
Gin, Nature Com. 2015 Glass → Hydrated Glass → Gels → Crystalline Phases 

Ostwald rule of stages 



What are the key parameters to be considered? 

|  PAGE 5 

Intrinsic Parameters 
→ Glass composition 
→ Glass structure (cooling rate, homogeneity) 
→ Reactive surface area, surface roughness and residual stress  
→ Self irradiation (in case of nuclear glasses) 

Extrinsic Parameters 
→ Temperature 
→ Unsaturated (relative humidity) vs water saturated medium 
→ pH, water composition (itself modified by the surrounding 

solids) 
→ Flow rate 
→ (Pressure, Eh, microbial activity) 

 



Basic mechanisms 
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• Hydration / Interdiffusion 
 

• Hydrolysis of glass formers  
• Condensation of some hydrolyzed species 
(Si, Al, Ca…) 
 

• Precipitation of secondary phases 



KINETIC REGIMES 
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A few orders of magnitude 

Massive precipitation of 
silicate mineralsGel formation 

& affinity effect
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r0 depends on glass 
composition, T, pH and 
to a lesser extent to the 
solution composition 
(Jollivet Chem. Geol. 2012) 

 
PA relying on r0 ends up 
to glass lifetime of a few 
103 years… 

Some key figures @ 90°C for SON68 or ISG glass 
• 10-20 m2.s-1 < Dw in pristine glass ∼ DB, Na at t0 < 10-17 m2.s-1 

• r0 ~ 0.2 - 5 µ.d-1 
• rr ~ 10-3 - 10-5 µ.d-1 
• 10-23 m2.s-1 < Dw in stage II < 10-20 m2.s-1 

• Time to form a passivating layer: [days – years] depending on exp. conditions 
• In case of zeolite precipitation r ~ [1-1/10] r0 
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Relation between short-term & residual rate  

• Measuring initial rates does not help understand what could happen at long term 

• Same conclusion for PCT 7d 
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Pre-sat solution makes the RD stage much shorter but does not impact the 
RR regime.  

3 processes causing the drop of the rate 
1 : Effect of Si (affinity effect) 

Grambow, MRS proc. 1985 
Mc Grail, J. Non-Cryst. Sol. 2001 
Neeway, J. Nucl. Mater. 2011 
Gin, Int. J. Appl. Glass Sci. 2013♣ 

Icenhower, J.Nucl.Mater. 2013 
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♣ Static tests, S/V 8000 m-1, 90°C, 3y 
Pre-saturated solution vs DIW 



3 processes causing the drop of the rate 
2 : formation of a PRI 

Gin et al., Chem. Geol 2013♣, Nature Comm. 2015, Geochim. Cosmochim. Acta 2017 
Hellmann, Nature Mater. 2015, Geisler, Geochim. Cosmochim. Acta 2015 

 Very sharp reaction front 

 Dwater→hydrated glass << Dwater→glass at the 
beginning of the dissolution process 

  

  

Pristine  
glass   

Hydrated  
glass   

Macroporous  
alteration layer 

  Crystalline 
phases   

2 µm   
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Water Glass 

H2O 
Si 

B 
Zr 

Condensed Si 

Zr at.: immobilize increasing numbers of Si  

-> prevents any reorganization 

-> percolation pathways                               
(leaching sol. - pristine glass surf.) 

Porosity clogging: up to 4% of ZrO2  2.5 microns 

3 processes causing the drop of the rate 
3 : Effect of porosity clogging 

500 nm 100 nm500 nm 100 nma b c500 nm 100 nm500 nm 100 nma b c

Cailleteau, Nature Materials 2008 
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Why alteration does not stop in stage II? 

Massive precipitation of 
silicate mineralsGel formation 

& affinity effect
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Hypothesis 1: because precipitation of 
secondary phases consumes elements 
form the passivation layer. 
Yes for some cases but not necessarily! 
Most of simple glasses do not form 
secondary phases between pH 7 and 9 

Hypothesis 2: because IX continues beyond the saturation of the solution 
w.r.t. SiO2am (Grambow MRS proc. 1985 ; McGrail J. Non Cryst. Sol. 2001) 

No, recent results show that Na and B profiles do not match a simple IX 
process 

Gin, J. Non Cryst. Sol. 2012 

Hypothesis 3: water accessibility to reactive sites is 
hampered the the low porous gel formed by in-situ 
reoganization of the silicate network after the 
departure of mobile species 
Need to be confirmed by a better understanding of 
water speciation and dynamics within the alteration 
layers (EFRC WastePD project) |  PAGE 14 



Why dissolution turns into stage III? 
Massive precipitation of 

silicate mineralsGel formation 
& affinity effect
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(Fournier, PhD thesis, 2015) 

200

160

120

80

40

0
200150100500μm

Si+
MC:   549; TC: 9.453e+006

500

400

300

200

100

0

SEM image after SIMS 

200

160

120

80

40

0
200150100500μm

Zr+
MC:    84; TC: 8.289e+005

80

60

40

20

0

200

160

120

80

40

0
200150100500μm

Al+
MC:   804; TC: 8.346e+006

800

600

400

200

0

(Gin, Geochim. Cosmochim. Acta 2015♣, Ribet, J.Nucl.Mater. 2004, Fournier, J.Nucl.Mater. 2014) 

At pH > 10.5, IX is not a active 
process and both Si and Al are highly 
soluble. 

A dense, rate limiting, amorphous 
layer is supposed to precipitate 

Zeolite crystals nucleate and grow, 
first consuming species available in 
the bulk solution until the solution is 
unsaturaed wrt the passivating layer 

The glass surface is no longer 
protected, the rate increases by 
several O.M., controlled by the growth 
rate of zeolites 
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Solution Glass

Original surface

Classical theory
involving inter-diffusion

Interfacial
Dissolution/precipitation
theory

Solution Glass

Material formed by congruent dissolution and 
precipitation of sparingly soluble species

Glass

Material formed by inter-diffusion and in situ 
hydrolysis/condention reactions

Interfacial film of water

Solution

B, Na, Ca

B, Na, Ca

Ferrand, J.Nucl.Mater. 2006 
Frugier, J. Nucl. Mater. 2008 

Hellmann, Nature Mater. 2015 

Two different models for the same thing! 



|  PAGE 17 

9 Ox Borosilicate glass altered @ 150°C pH ∼ 0 
Geisler, J. Non Cryst. Sol. 2010 

ISG glass altered @ 90°C pH ∼ 11.5 
Gin, Geochim. Cosmochim. Acta (2015) 

Evidence of dissolution - precipitation 
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Evidence of the formation of a passivating layer  
by in situ reorganization of the silicate network 

Rate limiting mechanisms strongly depend 
leaching conditions 
More discussion in Gin, Chem. Geol 2016 

SiO2 B203 Na20 Al2O3 Ca0 ZrO2

56.2 17.3 12.2 6.1 5.0 3.3

ISG glass composition (wt%)

ISG glass altered 
@ 90°C, Si 
saturated solution 
and pH 7 
Gin et al. Nature 
Comm. (2015) 



Evidence of the formation of a passivating layer  
by in situ reorganization of the silicate network 

New evidence of ultra-slow mobility of water 
molecules in passivating layer (Collin et al., in prep.) 

ISG glass altered @ 
90°C, Si saturated 
solution and pH 7 
Gin, Nature Comm. 2015 Bromothymol Blue

Methylene Blue



BRIEF SUMMARY 

 The initial dissolution rate is controlled by the hydrolysis of the silicate 

network. It is the fastest rate for a given glass under given T and pH 

conditions 

 The rate drops because Ahydrolysis  and a passivating layer forms 

 The mechanisms by which passivating layers and non passivating gels 

(dissolution/precipitation vs in situ reorganization) form strongly depend on the pH 

 The origin of passivation needs to be better understood 

 Precipitation of Si-phases plays a major role in stage II and III  
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A few examples of the effect of 
environmental parameters on 

glass alteration 
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Mercado-Depierre, J. Nucl. Mater. 2012 

Example: effect of Ca supplied by the solution 

Clayey ground water: pH ∼ 7 

 Cement water: pH 11-13 

  Stage I  
(hydrolysis of the silicate netwrok) 

  Stage II  
(passivation compeeting with 

mineral precipitation ) 
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Effect of near-field materials 

Chemical reactions & Transport must be considered 

Clay

Glass powder
Fe
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Michelin, Env.Sci.&Tech. 2013 
Burger, Appl. Geochem. 2013 

SON68, 50°C, synthetic GW, anoxic conditions, 
low flow rate, 2y  

At few mm from the iron source  

In between  

Direct contact  
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Glass dissolution kinetics strongly depends glass composition (Frugier, J. Nucl. Mater. 2005) 

Synergetic effects: experimental design methodology, simple glasses  

INFLUENCE OF GLASS COMPOSITIONS 
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Modeling glass alteration in an open and reactive environment 

Results included in this document are CEA’s property. They cannt be disclosed without prior authorization. 
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GRAAL has been developed to predict the rate of glass dissolution as a function of 
environmental conditions.  
GRAAL relies on the properties of a passivating layer called PRI 
Equations are implemented either in a reactive transport code (HYTEC) 

Frugier et al. J. Nucl. Mater. (2008) 380 ; Minet et al., J. Nucl. Mater (2010) 404; 
Debure et al., J. Nucl. Mater. (2013) 443 
 

Recent applications : evaluate the effect of COx ground water, the effect of flow rate, the 
effect of Mg bearing minerals, simulate the resumption of alteration  

Under development: complete parameterization between RT and 90°C, 2 PRIs, construction 
of a simplified tool to assess the effect of corrosion products on glass durability  

E(t) : Thickness of the dissolved PRI 
e(t) : Thickness of the PRI 
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Toward a new mechanistic model  

Step 1: in-depth understanding of the rate limiting 
mechanisms controlling stage II and the transition 
toward stage III 
  
 
 

Step 2: understanding of glass composition effects 
  
 
 

Step 3a: understanding of irradiation effects 
Step 3b: understanding of nearfield materials 
effects 

General 
equations 

Parameterization 
 
 



Step 1: Rate limiting mechanisms  

• Smart experimental designs on model glasses (e.g. glass or 
solution spiked with isotopes) 

• Advanced analytical techniques (cryo-APT, cryo-SIMS, in situ 
Raman…) 

• Molecular Dynamics, Kinetic Monte Carlo simulations 

• Role/properties of gels 
• Role/properties of secondary phases 
• Role of solution chemistry (bulk and in nanoporous gels) 
• Need to bridge the various scales (molecular -> macroscopic)  
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• Fundamental understanding of basic processes 
• Set of equations  
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Step 2: Effects of glass composition  

• Explore the ISG domain with Molecular Dynamics (Si, B, Na, 
Al, Ca, Zr) + experimental validation  

• By substitution or addition  study the effects of other 
elements (Mg, Fe, REE…)  

• Link glass composition & rate limiting mechanisms N
E

E
D
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• Parameterization of the model 
• New rules to improve glass formulation 
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Step 3: Effects of irradiation and NF materials  

• Irradiation: experiments + MD/KMC simulations 
• NF effects: experiments + geochemical calculations 

• Understand various disruptive effects N
E

E
D

 
M

E
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N
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• Parameterization of the model 
• New suggestions to improve the design of the multi-

barrier system 
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BACKUP SLIDES 



GENERAL FEATURES 

Assembly of connected polyhedra 
with no long range order (> 1 nm) 

Distribution of angles, rings statistic … 

SiO2 

SiO2 Na2O 
 

SiO2 Na2O Al2O3 
 

The degree of disorder increases with increasing cooling rate 



Outline 

1. Improvement in understanding 

effects of irradiation on glass 

2. Improvement in understanding 

glass corrosion mechanisms 

3. Conclusions and Open questions 
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ASTM Standard C1174-07 
Poinssot et al., J. Nucl. Mater. (2012) 

Long-term behavior science is an 
iterative process involving THMCR 
couplings between glass and the 
geological disposal design 

CEA’s Scientific council January 10th – 11th, 2017 
Results included in this document are CEA’s property. They cannot be disclosed without prior authorization. 
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Understanding the effects of alpha decays in glass (1/2) 
  

Modifications observed in the first 4x1018α/g according to a direct impact model … 
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• Slight modification of density and mechanical properties  
• Glass is still homogeneous (SEM and TEM scale) 
• No effect on initial dissolution rate 
• Modification of glass Short Range Order (B coordination, 

NBO …) 
• Modification of Medium Range Order (ring statistic, angle 

distribution) 
 

Peuget et al., J. Nucl. Mater. 444 (2014) 76-91 
Maugeri et al. J. Amer. Soc. 95 (2012) 2869 
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Understanding the effects of alpha decays in glass (2/2) 
  Charpentier et al., Scientific Reports (2016); Mir et al., Eur. Phys. Lett. (2015) 

112 ; Mir et al. J. Nucl. Mater. (2016) 469 
 How to simulate α decay in glass in a short time? (external irradiation of inactive glass, α doped 

glass with short live emitters, MD simulation)  

Alpha particles 2 MeV He, Se   
 
Heavy ions     14MeV Au, Sn 
 
Alpha + Au 
 
Au+ Alpha 
 
Simultaneous 

Studied glass  
a-SiO2, 
CJ1,  
ISG,  
SON68 

Ion Se 
(keV/n
m)

Sn 
(keV/
nm)

Flux(cm2/s)

2 MeV Alpha 0.4 10-4 2x1013

14 MeV Au 2.5 2 1x1010
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BS3(a) Mono, sequential and dual beam irradiation.

Recovery

Role of both nuclear and electronic stopping 
powers 
- Heavy ions: main damage (~ supervitrification) 

- Alpha particle: recovery effect due to electronic energy 
loss 

Explain the lower property variation observed on actinide doped glass compared to heavy 
ions irradiated glass 

Alpha decay effects should be simulated by dual beam irradiation ! 

 



A rate never equal to zero: case of nuclear glass and 
basaltic glass 
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How glass surface is passivated? 

Results included in this document are CEA’s property. They cannot be disclosed without prior authorization. 
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Reconstruction of the reactive interface from a multiscale analysis of the alteration layer 
formed under residual rate conditions  
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New paradigm: the rough interface if created in the early stage of glass corrosion and 
propagates into the material at a rate limited by the accessibility of water molecules to the 
reactive interface.   
Water molecules are confined in pores of ∼1 nm. 
With the passivating layer the diffusivity of water is decreased by 3 O.M. (10-23 m2.s-1) 

ω = 15 nm 
Λ = 100 nm 

Gin et al. Nature Comm. 2015 ; Gin et al. Geochim. Cosmochim. Acta, sub. 



Effect of irradiation on glass alteration  

Results included in this document are CEA’s property. They cannot be disclosed without prior authorization. 
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1Mougnaud, Ph-D, Paris Saclay University (2016); 2Rolland et al., J. Nucl. Mater (2013); 3Rolland et al., Inter. J. App. Glass Sci. (2013) 

×3 

4Advocat et al., J. Nucl. Mater (2001) 
5Peuget et al., J. Nucl. Mater (2014) 

α and β/γ dose rate and cumulative dose effects studied  

∗ Both on doped glasses & by external irradiation 

∗ In pure water, and high reaction progress (residual rate) 

 

 First order impact : alpha cumulative dose (around ×3)1 

 Second order impact (in prospect) : high alpha dose rate1 ? 
 

 No significant impact of irradiation 

 On initial rate value4,5  

 Of β/γ dose rate on residual alteration rate value2,3 

 Of β/γ cumulative dose on both rate and “gel” structure1 

 Of α dose rate ≤ 150 Gy/h (i.e. after 1,000 years)3 

Time (days) 

N
or

m
al

iz
ed

 m
as

s 
lo

ss
 (g

.m
-2

) 

Pu-doped glass 



Glass durability = f(glass composition &  environment) 

Results included in this document are CEA’s property. They cannot be disclosed without prior authorization. 
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The ground water and large amounts of Fe in the vicinity of glass could impact the source term  

Jollivet et al. Chem. Geol. 2012, 330 

► The COx ground water increases by a factor 
of 5 the initial dissolution rate of the glass  

Michelin et al. Env. Sci. & Tech.. 2013, 47 

► Fe0 & iron corrosion products strongly 
affect the fate of Si and thus delay the 
formation of a passivating layer. Reactive 
transport modeling in progress, 



Glass Degradation Model 

 
 

r = k0 •10 η•pH • exp(-Ea/RT) • (1 - Q/K) 
 

k0 rate coefficient for glass composition 
 

η  accounts for pH dependence 
 

Ea accounts for temperature dependence 
 

(1 - Q/K) affinity term accounts for solution feed-back effects 
 

 Q is activity of orthosilicic acid  
 

 K is activity of orthosilicic acid at “equilibrium” 

TST-based Rate Laws (used for PA in the US) 

Main limitation: passivation not taken into account (several 
implications for the residual rate regime and stage III)  

6 
Rate laws 
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Experiments  

 International Simple Glass (ISG) 

 16 glass coupons have been altered at 90°C 
in 380 mL of solution initially saturated / 
(29Si02)am at pH90°C 9 

 S/V = 0.6 cm-1 

 Isotope sensitive analytical techniques: MC-
ICP-MS and ToF-SIMS, TEM, APT 

 Coupon withdrawal: 7, 209, 363, 875 days 

 2 additional experiments with the 875d 
sample 

SiO2 B203 Na20 Al2O3 Ca0 ZrO2 

56.2 17.3 12.2 6.1 5.0 3.3 

ISG glass composition (wt%) 

(29Si/28Si)solution = 40 

29Si/28Si = 0.05 
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GlassSolution
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Z 

Probe size 

Probing chemical gradients at various scales  



Analytical techniques  
 

 EFTEM (dual beam FIB prep and 
FEI TITAN 200 kV) 

 TOF-SIMS (TOF.SIMS5, IONTOF) 
Low energy abrasion beam and reprocessing of 
data in order to get various rastered areas 

 Atom Probe Tomography (3DAP CAMECA-LaWaTAPV) 
 
 Z resolution: 0.2 nm  

Probe size: 12 nm 

Z resolution: 2 nm  
Probe size: 40 -150 nm 

Z resolution: 2 nm  
Probe size: 1 - 30 µm 
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ToF-SIMS data  
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B profiles 

Time-dependance 
profiles 

Z resolution: 2 nm  
Probe size: 1-30 µm 

7 days 

209 days 
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875 days 
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Reconstruction of the chemical profiles 

Results included in this document are CEA’s property. They cannot be disclosed without prior authorization. 
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Reconstruction of the reactive interface from a multiscale analysis of the alteration layer 
formed under residual rate conditions  

Pristine glassAltered glass
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New paradigm: the rough interface if created in the early stage of glass corrosion and 
propagates into the material at a rate limited by the accessibility of water molecules to the 
reactive interface.   
Water molecules are confined in pores of ∼1 nm. 
With the passivating layer the diffusivity of water is decreased by 3 O.M. (10-23 m2.s-1) 

ω = 15 nm 
Λ = 100 nm 

Gin et al. Nature Comm. 2015 ; Gin et al. Geochim. Cosmochim. Acta, 2017. 
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The 875d sample is immersed 10 d in DIW at 2°C 

Mobility of “mobile” species  

 B and Ca remain trapped in the alteration layer ⟹ those species 
might be present in highly durable clusters  

 Unexpectedly 29Si is mobile 
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 Passivation occurs within the first tens of days 
 Dapp drops by 3 O.M. 
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Exprimental data

Transition between 
interdiffusion 
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Apparent Diffusivity of the Passivating layer  
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Effect of alkali 

(2) Conway et al., Journal of Solution Chemistry,1999,  

Size of the alkali2. 

The effect of counter ions in the solution is currently being studied :  
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Water dynamics in passivating layers (1/3) 

ISG glass coupon 
altered for 1 year @ 

90°C, pH 7, Sisat  

H2
18O 

ToF-SIMS 

Quantitative analysis of 
18O/16O profiles with the 

passivating layer 

In depth characterization 
of the passivating layer 
(water content, porosity, 

pore size, speciation) • Mass balance 
• Flux of water reaching 

the pristine glass 
surface 
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Pore size ∼ 1 nm 

Oskeleton = 0.75, OSiOH = 0.12, OH20 = 0.12 
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ToF SIMS profiles at various contacting time 
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Water budget based on O isotopes 
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