

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Site-Scale Saturated Zone Model Update and Integration of New Regional and Site-Scale Models

Presented to: Nuclear Waste Technical Review Board

Presented by: AI A. Eddebbarh, Ph.D, PE Saturated Zone Department Manager Los Alamos National Laboratory Bechtel SAIC Company, LLC

George Zyvoloski, Ph.D Los Alamos National Laboratory

January 29-30, 2002 Pahrump, Nevada

Topics of Discussion

- New data and analyses
- Saturated Zone (SZ) flow model update
- Integration of regional and site-scale saturated zone models
- Multiple lines of evidence to support SZ flow and transport model feeds to Total System Performance Assessment

New Data and Analyses

 Location of new geologic cross sections

Cross Section Nye County - 2

 New data reduces uncertainty in the alluvial/tuff transition zone

Location of Existing Nye County Wells and Planned Future Nye County Wells

SZ Site-Scale Flow and Transport Model

- 3-D model implemented with FEHM software code has domain 30 km x 45 km x 2750 m below water table
- Hydrogeologic framework model contains 19 units
- Orthogonal grid with 500 m horizontal spacing and variable resolution in the vertical direction
- Flow model calibration used automated inversion
- Model calibration and validation uses data including
 - Water level measurements in wells
 - Inferred flow paths from hydrochemical data
 - Upward hydraulic gradient from carbonate aquifer
 - Ranges of measured permeability

Numerical Model

- Boundary conditions
 - Specified Head (sides: regional potentiometric surface)
 - Specified Flux (top: recharge map)
- Water budget
 - Regional fluxes are calibration targets
 - Steady state model, no change in water storage
 - Numerical mass balance error is negligible (0.00002)

Alternate Conceptual Models

Original model used in TSPA-SR with EW barrier

Newer model used in the expected case analysis with no EW barrier

- Vertical to Horizontal (1:10)
 - Carbonates, undifferentiated, some volcanics, alluvium
 - Faults (Solitario, Fortymile, Crater Flat, etc.) have higher vertical conductivity

Features in the SZ Model

1-Crater Flat Fault
2-Northwest Trending Fault Zone
3-Imbricate Fault Zone
4-Solitario Canyon Fault
5-Solitario Canyon Fault Splays
6-Highway 95 Fault
7-Bare Mountain Fault
8-Alluvial Uncertainty Zone
9-Lower Fortymile Wash Zone
10-Spotted Range-Mine Mountain Zone
11-Fortymile Wash Fault

- Horizontal E-W to N-S (1:5)
 - Yucca Crest to Fortymile Wash, length of Yucca Mountain
 - Top to 200m Depth (volcanic not carbonate)
 - Very little effect

New Calibrated Model

New data

- Hydrogeology
- Water level map
- New grids
 - Several different resolutions

Integration of Regional and Site-Scale Flow Models

- Both the regional-scale flow modeling performed by the USGS and the YMP site-scale flow models continue to evolve
- The most recent USGS regional-scale flow model is in review
 - Differs from the model available at the time of the SR mainly in that it includes more stratigraphic detail

Plan to Integrate the Regional-Scale and Site-Scale Flow Models

- Use the same hydrostratigraphic frameworks
- Use the same zones to subdivide hydrostratigraphic units for parameter estimation
- Use the numeric grids that coincide in the vertical and horizontal directions
- Extend to the same depth
- Use consistent hydraulic properties
- Use consistent boundary fluxes

Examples of Multiple Lines of Evidence

- Evaluation of single and cross-hole permeability data
- Groundwater carbon-14 ages

Evaluation of Single and Cross-Hole Permeability Data

- Combined unsaturated zone (UZ)/SZ single-hole permeability data indicate a decrease in permeability with depth, consistent with the trend expected because of increases in overburden stress and mineral alteration with depth
- In contrast, cross-hole permeability data from the c-wells show an increase in permeability with depth, counter to the expected trend

Evaluation of Single and Cross-Hole Permeability Data

- Cross-hole test permeabilities at the c-wells increase with proximity of test locations to Midway Valley Fault, suggesting that test results are primarily reflecting the effects of the fault rather than average rock properties
- High-resolution numerical simulations of C-wells cross-hole tests are planned to determine permeabilities of the faulted and unfaulted rock

Combined UZ/SZ Air and Water-Permeabilities

Increasing stratigraphic depth

Single and Cross-Hole Permeability Data from the SZ

Total Dissolved Inorganic Carbon-Based Corrections to Groundwater Carbon-14 Ages

- Corrected groundwater ¹⁴C ages are 11,000 to 17,000 years. The uncorrected ages are 12,000 to 18,000 years at the selected boreholes
- Corrected groundwater ¹⁴C ages are consistent with the combined UZ/SZ unretarded advective transport

Saturated Zone Data used in the Expected Case

- Stratigraphy and hydrochemistry from new Nye County Wells
- Hydraulic and tracer testing from the Alluvial Testing Complex
- Calibration of different conceptualizations of the Large Hydraulic Gradient
- Evaluation of boundary to the accessible environment

Transport Time Breakthrough Curves for the UZ, SZ, and Both Zones Combined

BSC Presentations_NWTRB Jan. 2002_YmEddebbarh_0129-3002.ppt

Summary

- A scientifically defensible model of saturated zone flow and transport at Yucca Mountain has been developed
 - Calibrated to hydrogeologic data
 - Some testing of transport conceptual models has been completed
- Nye county data are being incorporated
- Data collected since completion of models supporting TSPA for Site Recommendation are consistent with the bases used for these models

- Current data collection and modeling efforts are designed to
 - Reduce uncertainties
 - Relax conservative assumptions
 - Further validate conceptual models
- Efforts continue to improve consistency between the site-scale and the regional-scale models
 - Unified hydrologic model
 - Same vertical extent

Backup

Results of DIC-Based Groundwater ¹⁴C Age Corrections

Borehole	²³⁴ U/ ²³⁸ U activity ratio	¹⁴ C activity (pmc)	DIC, as HCO ₃ (mg/L)	Log P _{C02} (atm)	Log (IAP/K _{calcite})	q _{DIC}	Uncorrected ¹⁴ C age (years)	Corrected ¹⁴ C age (years)
USW G-2	7 to 8	20.5	127.6	-2.352	-0.791	1	13,100	13,100
UE-25 WT #17	7 to 8	16.2	150.0	-1.958	-1.175	0.86 to 0.96	15,040	13,750 to 14,710
UE-25 WT #3	7 to 8	22.3	144.3	-2.413	-0.515	0.89 to 1.	12,400	11,430 to 12,380
UE-25 WT #12	7 to 8	11.4	173.9	-2.327	-0.313	0.74 to 0.83	17,950	15,430 to 16,390
UE-25 c #3	7 to 9	15.7	140.2	-2.458	-0.319	0.92 to 1.	15,300	14,570 to 15,300
UE-25 b#1 (Tcb)		18.9	152.3	-1.892	-0.757	0.84 to 0.95	13,770	12,350 to 13,300
USW G-4		22.0	142.8	-2.490	-0.305	0.90 to 1.	12,500	11,630 to 12,510
NC- EWDP-2D	4 to 5	23.5	158.0	-2.330	-0.450	0.81 to 0.91	11,970	10,250 to 11,200

